

# MANAGING ACIDITY BIOLOGICAL & CHEMICAL METHODS



Anna Katharine
Mansfield
Chris Gerling
Cornell University

Katie Cook
University of
Minnesota

# COLD-CLIMATE CONCERNS



- Excessive acid
  - Reduce tartaric, malic, or both
- Excessive malic acid
  - Targeted demalication
- pH-TA mismatch
  - Control malic?
  - Excessive potassium?

#### DEACIDIFICATION METHODS

- Biological
  - Malolactic fermentation
    - Malic acid conversion to lactic acid
  - Yeast demalication
    - Malic acid conversion to ethanol, succinic acid
- Chemical
  - Carbonate additions
    - Consumes tartaric acid
  - Double-salt additions
    - Consumes tartaric and malic?



# DEACIDIFICATION TRIALS

- Biological
  - Evaluation of yeast demalication activity (2012)
  - Partial MLF & back blending (Year 3)
- Chemical (Year 3)
  - Reassessing 'double-salt' additions
- Optimization (Year 4)
  - Replicated trials of best methods (UMN & Cornell)

# YEAST DEMALICATION

- Commercial strains with known activity:
  - ICV-GRE (18%-25%), 71B(33%), S. pombe (variable), ML01(100%)
- Simple diffusion through yeast membrane
  - Lower pH = more dissociation = more malic activity
  - Conversion to succinic acid or ethanol
    - Production varies by fermentation environment
  - Glucose must be present
- Activity unknown in cold-hardy cultivars

### YEAST DEMALICATION



- UMN Enology Project
  - Two cultivars
    - Frontenac gris
    - La Crescent
  - Four yeast strains
  - Microfermentations (5 reps) for chemical analysis
  - Scale-up fermentations with selected yeasts for sensory evaluation

#### YEAST DEMALICATION

|                                 | Lalvin C<br>(Lalvin)             | Exotics<br>(Anchor)   | Opale<br>(Lalvin) | Torulaspora<br>delbrueckii<br>(Lallemand) | DV10<br>(Lallemand)                 |
|---------------------------------|----------------------------------|-----------------------|-------------------|-------------------------------------------|-------------------------------------|
| Reported<br>Malate<br>Reduction | Up to 45%                        | Up to 17%<br>observed | 0.1 to 0.4<br>g/L | None<br>Reported                          | Control                             |
| Yeast Type                      | S. cerevisiae<br>var.<br>bayanus | Hybrid<br>yeast       | S.<br>cerevisiae  | Non-<br>Saccharomyces                     | S.<br>cerevisiae<br>var.<br>bayanus |

- T. delbrueckii used in combination with Exotics (Frontenac gris) or Opale (La Crescent)
- Standard white wine production methods

# FRONTENAC GRIS

| DV10 (Lalvin)       | Lalvin C           | Exotics (Anchor) | TD + Exotics       |
|---------------------|--------------------|------------------|--------------------|
| TA (g/L)            | TA (g/L)           | TA (g/L)         | TA (g/L)           |
| <b>10.03</b> ±0.007 | <b>9.10</b> ±0.006 | 9.58 ±0.014      | <b>9.37</b> ±0.003 |
| Malate (g/L)        | Malate (g/L)       | Malate (g/L)     | Malate (g/L)       |
| <b>4.28</b> ±0.002  | 3.48 ±0.002        | 3.74 ±0.003      | <b>3.56</b> ±0.003 |

#### All differences in TA and Malate were significant (p < 0.05)

|              | Malate Reduction (%) |
|--------------|----------------------|
| Lalvin C     | 23% lower than DV10  |
| Exotics      | 15% lower than DV10  |
| TD + Exotics | 20% lower than DV10  |

# LA CRESCENT

| DV10<br>(Lallemand) | Opale (Lalvin)     | Exotics (Anchor)  | TD + Opale        |
|---------------------|--------------------|-------------------|-------------------|
| TA (g/L)            | TA (g/L)           | TA (g/L)          | TA (g/L)          |
| 9.856 ±0.11         | <b>9.418</b> ±0.09 | <b>9.24</b> ±0.06 | 9.37 ±0.04        |
| Malate (g/L)        | Malate (g/L)       | Malate (g/L)      | Malate (g/L)      |
| <b>4.78</b> ±0.05   | <b>4.74</b> ±0.02  | <b>4.26</b> ±0.03 | <b>4.70</b> ±0.02 |

- No statistical difference between malate levels in DV10, Opale, and TD + Opale (p > 0.05)
- Anchor Exotics showed a statistical difference in malate reduction between all other yeasts (p < 0.05)</li>

|         | Malate Reduction (%) |  |  |
|---------|----------------------|--|--|
| Exotics | 12% lower than DV10  |  |  |

### CARBONATE ADDITIONS

- Neutralization through addition of:
  - potassium bicarbonate (KHCO<sub>3</sub>)
  - calcium carbonate (CaCO<sub>3</sub>)

- Reacts with Tartaric acid (limiting factor)
- Malic acid not affected

# CALCIUM CARBONATE (CaCO<sub>3</sub>)

- Addition:  $1 \text{ g/L} \approx 1.5 \text{ g/L}$  drop in TA
- Pros:
  - Corrects very high acidity
- Cons:
  - Best used in juice/must
  - Saturates wine with calcium salt
    - bitter, chalky
  - Precipitates over long periods...very long periods



### **DOUBLE-SALT ADDITION**

- Theory: Under certain circumstances, calcium carbonate can be used to remove both tartaric and malic acids
- Tartaric acid in 1-5% of juice totally neutralized
- pH adjusted over 5 to deprotonate malic acid
- Neutralized juice returned to tank, resulting in chain-reaction that removes both tartaric and malic acid

# DOUBLE-SALT ADDITION







- Measure TA and tartaric acid concentration.
- Remove 1-5% total juice volume.
- Add calcium carbonate with constant stirring.
- Add calculated amount of tartaric acid + calcium carbonate with constant stirring
- Filter deacidified portion
- Return to tank with stirring

# **DOUBLE-SALT ADDITION**

#### Claims:

- Larger acid reductions
- Calcium carbonate completely consumed
  - = no lingering instability
- Removes both tartaric and malic acids
- Acid reduction due to action of 'double salt' – calcium tartro-malate

Can we use double-salt on high-malic wines?



# REVISITING DOUBLE-SALT

Mythbuster #1:



Calcium tartro-malate does not form in this universe.

### DOUBLE-SALT REVISITED

#### What we know:

- Two salts are involved-calcium tartrate and calcium malate
- Calcium malate forms very slowly; reaction favors calcium tartrate
- Calcium carbonate probably doesn't react completely
- Total deacidification impossible to determine

#### What we still don't know:

- How much malic acid can be removed (likely, not much)
- How this reaction will change in wine due to buffering capacity
- How much instability will remain from unreacted calcium

# DOUBLE-SALT REVISITED

- Cornell Enology Extension
- Two cultivars:
  - Frontenac gris
  - La Crescent

- Methods:
  - Modeling trials
  - Juice double-salt
  - Wine double-salt



### DOUBLE-SALT MODELING

- 500ml from 2gal duplicate lots
- CaCO<sub>3</sub> addition with stirring
- HPLC organic acid & pH check at 0, 15 min, 30 min, 1 hour, 2, 4, 8.
- Timed samples filtered, returned and tracked48hr



# MODELING, SCENARIO 1

- Does order of operation matter?
  - Theory: adding juice to CaCO<sub>3</sub> will allow for a higher pH, favoring malic removal.
  - Compare "juice first" to "CaCO<sub>3</sub> first."



### MODELING, SCENARIO 2

- Does relative concentration matter?
  - Theory: More malic acid will allow for better removal.
  - Add malic acid to create roughly 1:1 ratio.
  - Also compare order of operations as in Scenario1.



# MODELING, SCENARIO 3

- Does time matter?
  - Theory: More de-acidification happens after we stop watching.
  - Compare deacidified with control juice, starting the clock after adjustment and filtration.



#### FERMENTATION TRIALS

#### Juice at harvest

| Cultivar    | Brix | рН   | TA   | Tartaric | Malic |
|-------------|------|------|------|----------|-------|
| La Crescent | 24.8 | 3.06 | 14.3 | 8.0      | 7.8   |
| Front Gris  | 25.3 | 3.08 | 14.6 | 9.6      | 5.6   |

#### Wines following treatment & cold stabilization

| Cultivar                       | рН   | TA   | Tartaric | Malic |
|--------------------------------|------|------|----------|-------|
| La Crescent<br>Control         | 3.10 | 11.9 | 2.8      | 7.1   |
| La Crescent<br>Deacidification | 3.31 | 10.4 | 1.9      | 6.9   |
| Frontenac Gris<br>Control      | 3.06 | 11.8 | 4.0      | 5.5   |
| Frontenac Gris Deacidification | 3.24 | 10.1 | 2.6      | 5.6   |

# SUMMARY

- Demalication of yeast varies by strain, and is largely unexplored in cold-hardy hybrids.
- In theory, Double-Salt can remove malic, but only after all tartaric is consumed, and only in the treatment aliquot.
- The double salt... isn't.
- Future work:
  - Partial and blended MLF
  - Amelioration
  - Biological + chemical



### ACKNOWLEDGMENTS



- Dr. David Manns
- Nick Smith
- Black Diamond Farms
- Lakewood Vineyards
- Luann Preston-Wilsey and Pam Raes